59 research outputs found

    Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-Infected Brain: Novel Analysis of Retrospective Cases

    Get PDF
    HIV infection disturbs the central nervous system (CNS) through inflammation and glial activation. Evidence suggests roles for microRNA (miRNA) in host defense and neuronal homeostasis, though little is known about miRNAs' role in HIV CNS infection. MiRNAs are non-coding RNAs that regulate gene translation through post-transcriptional mechanisms. Messenger-RNA profiling alone is insufficient to elucidate the dynamic dance of molecular expression of the genome. We sought to clarify RNA alterations in the frontal cortex (FC) of HIV-infected individuals and those concurrently infected and diagnosed with major depressive disorder (MDD). This report is the first published study of large-scale miRNA profiling from human HIV-infected FC. The goals of this study were to: 1. Identify changes in miRNA expression that occurred in the frontal cortex (FC) of HIV individuals, 2. Determine whether miRNA expression profiles of the FC could differentiate HIV from HIV/MDD, and 3. Adapt a method to meaningfully integrate gene expression data and miRNA expression data in clinical samples. We isolated RNA from the FC (nβ€Š=β€Š3) of three separate groups (uninfected controls, HIV, and HIV/MDD) and then pooled the RNA within each group for use in large-scale miRNA profiling. RNA from HIV and HIV/MDD patients (nβ€Š=β€Š4 per group) were also used for non-pooled mRNA analysis on Affymetrix U133 Plus 2.0 arrays. We then utilized a method for integrating the two datasets in a Target Bias Analysis. We found miRNAs of three types: A) Those with many dysregulated mRNA targets of less stringent statistical significance, B) Fewer dysregulated target-genes of highly stringent statistical significance, and C) unclear bias. In HIV/MDD, more miRNAs were downregulated than in HIV alone. Specific miRNA families at targeted chromosomal loci were dysregulated. The dysregulated miRNAs clustered on Chromosomes 14, 17, 19, and X. A small subset of dysregulated genes had many 3β€² untranslated region (3β€²UTR) target-sites for dysregulated miRNAs. We provide evidence that certain miRNAs serve as key elements in gene regulatory networks in HIV-infected FC and may be implicated in neurobehavioral disorder. Finally, our data indicates that some genes may serve as hubs of miRNA activity

    Elevated Expression of Stromal Palladin Predicts Poor Clinical Outcome in Renal Cell Carcinoma

    Get PDF
    The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (Ξ±-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of Ξ±-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study

    Arousal of Cancer-Associated Stroma: Overexpression of Palladin Activates Fibroblasts to Promote Tumor Invasion

    Get PDF
    Background: Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Principal Findings: Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (a-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of a-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development o

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    Not Available

    No full text
    Not AvailableThe study aimed to identify the optimum tillage and source of nitrogen for refining yields, yield sustainability and rainwater-use efficiency, and to develop predictive models explaining the relationships between crop yield and monthly rainfall with main goal of reduced cost of cultivation and increased profitability for long-term sustainability of maize-wheat system. A long-term field experiment of maize-wheat system was conducted from 2000 to 2012 at RRS Ballowal Saunkhri, PAU, Ludhiana in split-plot design with 3 replications. The treatments included 3 tillage practice, viz., conventional tillage (CT), reduced tillage (RT1), and RT + herbicide (RT2) in the main plots and 3 nitrogen (N) management practices, viz., 100% N from organic source (F1), 50% N from organic + 50% N from inorganic source (F2), and 100% N from inorganic source (F3) in the sub-plots. The parameters included maize and wheat yields, rainwater use efficiency, economics, sustainability yield index to develop predictive models. Prediction models expressing relation between yield and monthly rainfall showed beneficial effect of rainfall in June, July and September months of maize and January and February in wheat on crop productivity. RT2, gave highest maize grain yield (2264 kg/ha) with 13.8 and 1.8% yield superiority over RT1 and CT, respectively. However, in wheat CT recorded highest grain yield (2110 kg/ha) with 7.9 and 1.7% higher yield than RT1 and RT2, respectively. The RT2F3 gave highest net returns of US222.60/hawithB:Cratioof1.88,rainwaterβˆ’seefficiency(RWUE)of4.78kg/ha/mmandsustainabilityyieldindex(SYI)of60.7 222.60/ha with B:C ratio of 1.88, rainwater-se efficiency (RWUE) of 4.78 kg/ha/mm and sustainability yield index (SYI) of 60.7% in maize, whereas in wheat it provided net returns of US 315.45/ha with B:C ratio of 2.28, RWUE of 23.0 kg/ha/mm and SYI of 47.4%Not Availabl
    • …
    corecore